Embrapa Meio Ambiente
Uma equipe de pesquisadores da Embrapa, Unicamp e Inpe vem utilizando o conjunto de dados do programa Harmonized Landsat Sentinel-2 para identificar o uso e cobertura da terra e separar as áreas com cultivo da soja, a commodity agrícola mais importante do Brasil, de outras culturas anuais encontradas na região em 2022. Esse tipo de abordagem e de resultados, utilizando sensoriamento remoto, pode contribuir em políticas públicas e no monitoramento dos cultivos agrícolas em larga escala ao longo do ano/safra, de forma menos custosa e mais precisa.
Além da efetiva cobertura do período de safra propiciado pelas imagens e técnicas de análise aplicadas, observou-se a capacidade de mapear sub alvos, como a identificação de plantações de soja sob sistema de irrigação ou sequeiro de forma mais eficaz, com 88% de precisão.
De acordo com Édson Bolfe, pesquisador da Embrapa Agricultura Digital e coordenador do projeto Mapeamento agropecuário no Cerrado via combinação de imagens multisensores, financiado pela Fapesp – MultiCER –, o uso dos dados HLS eleva sobremaneira o tempo de cobertura de dados (resolução temporal), com até 7 cenas por mês nos mesmos locais, e uma resolução espacial, que indica a menor unidade de área representada, de 30 metros.
“No estudo, com o uso desses satélites de forma integrada, tivemos 13 imagens com menos de 50% de cobertura de nuvens, entre outubro e março, para o mapeamento da safra dos cultivos agrícolas de verão, no ano safra 2021/-2022, na área de estudo. Áreas como o oeste da Bahia, especificamente o local do trabalho, que abrange parcialmente os municípios de Barreiras, Luís Eduardo Magalhães e Riachão das Neves, conhecido como ‘Anel da Soja’ devido à intensa produção desse cultivo, são severamente afetadas pela cobertura de nuvens persistentes, principalmente entre dezembro e fevereiro, quando geralmente se perde cerca de 70% das informações contidas nas imagens. Isso se torna um excelente exemplo do desafio de monitoramento de safra no Brasil: grandes áreas, alta produtividade, ciclo rápido e baixa disponibilidade de dados”, comenta Bolfe.
75% da alimentação mundial
Conforme Taya Parreiras, pesquisadora doutoranda em Geografia no Instituto de Geociências da Unicamp e integrante do projeto, “monitorar a produção agrícola de sequeiro, que responde por aproximadamente 75% da alimentação global, pode ser beneficiada por abordagens multisensor, pois elas aumentam a periodicidade das observações pelo aproveitamento de informações complementares de múltiplas fontes de dados de satélite, otimizando a capacidade de identificação do tipo de cultura”.
“Durante as visitas de campo, também identificamos áreas em processo de conversão de vegetação natural para possível cultivo anual ou pastagem, em processo de regeneração da vegetação nativa, bem como áreas de silvicultura sendo transformadas em pastagens. Considerando a dinâmica de conversões de uso da terra nesta moderna fronteira agrícola, onde as decisões de mudança são impulsionadas principalmente pelo agronegócio, situações como essas são bastante comuns” diz Parreiras.
Os diferentes projetos de mapeamento de uso agrícola no Brasil podem se beneficiar dos dados Harmonized Landsat Sentinel-2 e da metodologia proposta no projeto, potencializando o monitoramento da dinâmica no meio rural e a melhor compreensão de processos como expansão, integração, diversificação, conversão e intensificação agrícola, enfatiza Bolfe
Mais informações, clique aqui